Advanced Design System 2011.01 - HDL Cosimulation

" " .
v".u
Ty | e

%2 Agilent Technologies
Advanced Design System 2011.01

Feburary 2011
HDL Cosimulation

Advanced Design System 2011.01 - HDL Cosimulation

© Agilent Technologies, Inc. 2000-2011

5301 Stevens Creek Blvd., Santa Clara, CA 95052 USA

No part of this documentation may be reproduced in any form or by any means (including
electronic storage and retrieval or translation into a foreign language) without prior
agreement and written consent from Agilent Technologies, Inc. as governed by United
States and international copyright laws.

Acknowledgments
Mentor Graphics is a trademark of Mentor Graphics Corporation in the U.S. and other
countries. Mentor products and processes are registered trademarks of Mentor Graphics

Corporation. ™ Calibre is a trademark of Mentor Graphics Corporation in the US and other
countries. "Microsoft®, Windows®, MS Windows®, Windows NT®, Windows 2000® and
Windows Internet Explorer® are U.S. registered trademarks of Microsoft Corporation.
Pentium® is a U.S. registered trademark of Intel Corporation. PostScript® and Acrobat®
are trademarks of Adobe Systems Incorporated. UNIX® is a registered trademark of the
Open Group. Oracle and Java and registered trademarks of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners. SystemC® is a registered
trademark of Open SystemC Initiative, Inc. in the United States and other countries and is
used with permission. MATLAB® is a U.S. registered trademark of The Math Works, Inc..
HiSIM2 source code, and all copyrights, trade secrets or other intellectual property rights
in and to the source code in its entirety, is owned by Hiroshima University and STARC.
FLEXIm is a trademark of Globetrotter Software, Incorporated. Layout Boolean Engine by
Klaas Holwerda, v1.7 http://www.xs4all.nl/~kholwerd/bool.html . FreeType Project,
Copyright (c) 1996-1999 by David Turner, Robert Wilhelm, and Werner Lemberg.
QuestAgent search engine (c) 2000-2002, JObjects. Motif is a trademark of the Open
Software Foundation. Netscape is a trademark of Netscape Communications Corporation.
Netscape Portable Runtime (NSPR), Copyright (c) 1998-2003 The Mozilla Organization. A
copy of the Mozilla Public License is at http://www.mozilla.org/MPL/ . FFTW, The Fastest
Fourier Transform in the West, Copyright (c) 1997-1999 Massachusetts Institute of
Technology. All rights reserved.

The following third-party libraries are used by the NlogN Momentum solver:

"This program includes Metis 4.0, Copyright © 1998, Regents of the University of
Minnesota", http://www.cs.umn.edu/~metis , METIS was written by George Karypis
(karypis@cs.umn.edu).

Intel@ Math Kernel Library, http://www.intel.com/software/products/mkl

SuperLU_MT version 2.0 - Copyright © 2003, The Regents of the University of California,
through Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy). All rights reserved. SuperLU Disclaimer: THIS
SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

2

http://www.xs4all.nl/~kholwerd/bool.html
http://www.xs4all.nl/~kholwerd/bool.html
http://www.mozilla.org/MPL/
http://www.mozilla.org/MPL/
http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~metis
http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl

Advanced Design System 2011.01 - HDL Cosimulation
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

7-zip - 7-Zip Copyright: Copyright (C) 1999-2009 Igor Pavlov. Licenses for files are:
7z.dll: GNU LGPL + unRAR restriction, All other files: GNU LGPL. 7-zip License: This library
is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This library is distributed
in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details. You should have received a copy of the
GNU Lesser General Public License along with this library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
unRAR copyright: The decompression engine for RAR archives was developed using source
code of unRAR program.All copyrights to original unRAR code are owned by Alexander
Roshal. unRAR License: The unRAR sources cannot be used to re-create the RAR
compression algorithm, which is proprietary. Distribution of modified unRAR sources in
separate form or as a part of other software is permitted, provided that it is clearly stated
in the documentation and source comments that the code may not be used to develop a
RAR (WinRAR) compatible archiver. 7-zip Availability: http://www.7-zip.org/

AMD Version 2.2 - AMD Notice: The AMD code was modified. Used by permission. AMD
copyright: AMD Version 2.2, Copyright © 2007 by Timothy A. Davis, Patrick R. Amestoy,
and Iain S. Duff. All Rights Reserved. AMD License: Your use or distribution of AMD or any
modified version of AMD implies that you agree to this License. This library is free
software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version. This library is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details. You should have received a copy of the GNU
Lesser General Public License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is
hereby granted to use or copy this program under the terms of the GNU LGPL, provided
that the Copyright, this License, and the Availability of the original version is retained on
all copies.User documentation of any code that uses this code or any modified version of
this code must cite the Copyright, this License, the Availability note, and "Used by
permission.” Permission to modify the code and to distribute modified code is granted,
provided the Copyright, this License, and the Availability note are retained, and a notice
that the code was modified is included. AMD Availability:
http://www.cise.ufl.edu/research/sparse/amd

UMFPACK 5.0.2 - UMFPACK Notice: The UMFPACK code was modified. Used by permission.

UMFPACK Copyright: UMFPACK Copyright © 1995-2006 by Timothy A. Davis. All Rights

Reserved. UMFPACK License: Your use or distribution of UMFPACK or any modified version

of UMFPACK implies that you agree to this License. This library is free software; you can

redistribute it and/or modify it under the terms of the GNU Lesser General Public License
3

http://www.7-zip.org/
http://www.7-zip.org/
http://www.cise.ufl.edu/research/sparse/amd
http://www.cise.ufl.edu/research/sparse/amd

Advanced Design System 2011.01 - HDL Cosimulation
as published by the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version. This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this
program under the terms of the GNU LGPL, provided that the Copyright, this License, and
the Availability of the original version is retained on all copies. User documentation of any
code that uses this code or any modified version of this code must cite the Copyright, this
License, the Availability note, and "Used by permission." Permission to modify the code
and to distribute modified code is granted, provided the Copyright, this License, and the
Availability note are retained, and a notice that the code was modified is included.
UMFPACK Availability: http://www.cise.ufl.edu/research/sparse/umfpack UMFPACK
(including versions 2.2.1 and earlier, in FORTRAN) is available at
http://www.cise.ufl.edu/research/sparse . MA38 is available in the Harwell Subroutine
Library. This version of UMFPACK includes a modified form of COLAMD Version 2.0,
originally released on Jan. 31, 2000, also available at
http://www.cise.ufl.edu/research/sparse . COLAMD V2.0 is also incorporated as a built-in
function in MATLAB version 6.1, by The MathWorks, Inc. http://www.mathworks.com .
COLAMD V1.0 appears as a column-preordering in SuperLU (SuperLU is available at
http://www.netlib.org). UMFPACK v4.0 is a built-in routine in MATLAB 6.5. UMFPACK v4.3
is a built-in routine in MATLAB 7.1.

Qt Version 4.6.3 - Qt Notice: The Qt code was modified. Used by permission. Qt copyright:
Qt Version 4.6.3, Copyright (c) 2010 by Nokia Corporation. All Rights Reserved. Qt
License: Your use or distribution of Qt or any modified version of Qt implies that you agree
to this License. This library is free software; you can redistribute it and/or modify it under
the

terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2.1 of the License, or (at your option) any later version. This
library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this
program under the terms of the GNU LGPL, provided that the Copyright, this License, and
the Availability of the original version is retained on all copies.User

documentation of any code that uses this code or any modified version of this code must
cite the Copyright, this License, the Availability note, and "Used by permission.”
Permission to modify the code and to distribute modified code is granted, provided the
Copyright, this License, and the Availability note are retained, and a notice that the code
was modified is included. Qt Availability: http://www.qgtsoftware.com/downloads Patches
Applied to Qt can be found in the installation at:
$HPEESOF_DIR/prod/licenses/thirdparty/qt/patches. You may also contact Brian
Buchanan at Agilent Inc. at brian_buchanan@agilent.com for more information.

The HIiSIM_HV source code, and all copyrights, trade secrets or other intellectual property

rights in and to the source code, is owned by Hiroshima University and/or STARC.
4

http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.mathworks.com
http://www.mathworks.com
http://www.netlib.org
http://www.netlib.org
http://www.qtsoftware.com/downloads
http://www.qtsoftware.com/downloads

Advanced Design System 2011.01 - HDL Cosimulation

Errata The ADS product may contain references to "HP" or "HPEESOF" such as in file
names and directory names. The business entity formerly known as "HP EEsof" is now part
of Agilent Technologies and is known as "Agilent EEsof". To avoid broken functionality and
to maintain backward compatibility for our customers, we did not change all the names
and labels that contain "HP" or "HPEESOF" references.

Warranty The material contained in this document is provided "as is", and is subject to
being changed, without notice, in future editions. Further, to the maximum extent
permitted by applicable law, Agilent disclaims all warranties, either express or implied,
with regard to this documentation and any information contained herein, including but not
limited to the implied warranties of merchantability and fitness for a particular purpose.
Agilent shall not be liable for errors or for incidental or consequential damages in
connection with the furnishing, use, or performance of this document or of any
information contained herein. Should Agilent and the user have a separate written
agreement with warranty terms covering the material in this document that conflict with
these terms, the warranty terms in the separate agreement shall control.

Technology Licenses The hardware and/or software described in this document are
furnished under a license and may be used or copied only in accordance with the terms of
such license. Portions of this product include the SystemC software licensed under Open
Source terms, which are available for download at http://systemc.org/ . This software is
redistributed by Agilent. The Contributors of the SystemC software provide this software
"as is" and offer no warranty of any kind, express or implied, including without limitation
warranties or conditions or title and non-infringement, and implied warranties or
conditions merchantability and fitness for a particular purpose. Contributors shall not be
liable for any damages of any kind including without limitation direct, indirect, special,
incidental and consequential damages, such as lost profits. Any provisions that differ from
this disclaimer are offered by Agilent only.

Restricted Rights Legend U.S. Government Restricted Rights. Software and technical
data rights granted to the federal government include only those rights customarily
provided to end user customers. Agilent provides this customary commercial license in
Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212
(Computer Software) and, for the Department of Defense, DFARS 252.227-7015
(Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial
Computer Software or Computer Software Documentation).

http://systemc.org/
http://systemc.org/

Advanced Design System 2011.01 - HDL Cosimulation

About HDL Cosimulation e e e 7
Automatic Clock and Set Signals e e e 8
Bidirectional HDL POrts i e e e e e e 9
HDL Cosimulation Components and Their Parameters 10
HAISICFIlE . . o o e e e 10
INPULS . . o e e e e e e e e e e e e e 11
INpUEPhaSES e e e e e e e e 11
INPULPreCiSIONS & . . . e e e e e e e e e e e e e e e e e 12
OULPULS . L o e e e e e e 12
OUtPULPreCiSIONS o e e e e e e 12
HdIModelName e e e e e e e 13
HAILiDrary . . . e e e e e e e e e e e e e e e e 13
HAISIimulatorGUI e e e e e e e 14
CMAANGS . o o i e e e e e e e e e 14
TterationTime e e e e e e e e e e e e e e e 14
TIimeUNit . . e e e e 15
HDL Simulator LICENSES o i i e s e e e e e e e e e e 16
Precision for Bit-Vector Type POrtS i i i i e e e e e e e e 17
Requirements for HDL Cosimulation e e 18
Requirements for 64-bit Operating Systems i i e 18
Requirements for Windows Vista o i i e e 19
Supported HDL Data TypeS . . . o i i e e e e e e e e e e e e e e 20
Theory of Operation for HDL Cosimulation i i e e e e e e e e e e 21
Time-Specified Signals in User HDL Code i i e e e e e e 23

Advanced Design System 2011.01 - HDL Cosimulation

About HDL Cosimulation

With the ADS HDL Cosimulation feature you can simulate components represented in a
hardware description language (HDL) in the same schematic with other ADS components.
This integrated capability provides complete design flexibility, and complements other ADS
modules, including Digital Filter Designer.

The ability to design all portions of a communications product in one integrated
environment can eliminate design errors resulting from disconnects among design teams.
By cosimulating with HDL designs, you can easily incorporate your existing HDL
intellectual property into new designs.

With HDL cosimulation, you can test hardware defined in HDL with a DSP algorithm, or
use an algorithm written in HDL within an existing ADS design. VHDL and Verilog HDL are

supported. ADS Ptolemy provides the signal processing simulation, while the Model Sim ™
HDL simulator from Model Technology Incorporated, Verilog® XL from Cadence® Design
Systems, or NC-SIM from Cadence® Design Systems simulates the HDL code. This
cosimulation capability in one design environment makes it easy to test HDL components
along with complex ADS system designs and see the effect on the entire system.

I Important
Verilog® XL, and NC-SIM from Cadence® Design Systems are no longer supported on the Windows
platform.

Advanced Design System 2011.01 - HDL Cosimulation

Automatic Clock and Set Signals

HDL models that have pins named Clock and Set are treated differently. The HdICosim
component has pins named Clock and Set that are modeled as optional pins, meaning you
can leave them unconnected. Clock and Set must be part of your Inputs specification, so
that they will be processed as mentioned in the section Inputs (hdlcosim).

If you connect any signal to Clock and Set pins, that signal will be passed to the HDL port.
If you leave the pins unconnected, the default Clock and Set signals will be driven on the
Clock and Set HDL ports.

The default clock is of a 50% duty cycle and has a period equal to the HDL iteration time.
The positive clock edge occurs at IterationTime/2. The default value for the Set pin during
the first iteration is a logic low at 1/4 times the HDL iteration time, a logic high at 3/4
times the HDL iteration time, and a logic high for iterations after that.

The timing of application of inputs for the HDL code generated for a mixed logic is crucial.
For example consider a multiplexer (non-clocked, or in general any combinational logic)
followed by a latch (clocked, or any sequential logic). The input multiplexer would be
triggered the moment input is applied and would produce results with zero delay. If the
following component is a clocked component (for example, sequential logic like a latch),
then it will be triggered during the same iteration cycle at the positive edge of the clock.
So, in the above example, the multiplexer and the latch will be triggered in the same clock
cycle. In the corresponding fixed-point design, the multiplexer followed by a latch (Clock
and Set unconnected) would fire the multiplexer in one cycle and the latch in the next,
producing a delay of one cycle. The HDL cosimulation results will appear one cycle earlier
when compared to the equivalent ADS component simulation results.

To match the results, the inputs to the HDL cosimulation block must be delayed until after
the positive edge of the clock or IterationTime/2. The inputs will be applied to multiplexer
or combinational logic after the positive clock edge. The latch will latch this result only in
the next firing of the HDL cosimulation block or the next positive clock edge (the
automatic clock has one positive clock edge per firing).

The delay for each input ports is specified in the parameter InputPhases (hdlcosim).

Advanced Design System 2011.01 - HDL Cosimulation

Bidirectional HDL Ports

For a bidirectional VHDL port, two ports are created on the cosimulation model. One port
is an input port named <VHDL portname>In, while the other port is an output port named
<VHDL portname>O0Out. The input data on the inout type port is applied by ADS for the
first half of the HDL iteration time; the signal value is then changed to a tri-state
condition. You can drive the output data on an inout type port only during the second half
of the HDL iteration time, when the value has been changed to a tri-state condition by
ADS. You must set the inout port to a tri-state condition during the first half of the HDL
iteration time period, so that ADS can drive the new input data value on the inout port.

Bidirectional ports are not supported in Verilog cosimulation.

Advanced Design System 2011.01 - HDL Cosimulation

HDL Cosimulation Components and
Their Parameters

HDL cosimulation components are available in the HDL Blocks palette or library (Insert >
Component > Component Library > HDL Blocks). The ModelSim cosimulation component
is HdICosim; the VerilogXL cosimulation component is VxICosim; and, the NC-SIM
cosimulation component is NCCosim.

Some HDL simulators require compiled HDL code before simulation. If the user code has
not been compiled, HDL cosimulation can compile the user code before cosimulation or
use existing compiled HDL code depending on the HdISrcFile and HdlLibrary settings. The
process is further simplified for ADS-generated Verilog code.

© Note
NC-SIM cosimulation uses ncverilog for compilation and simulation. For VHDL cosimulation, the VHDL code
will automatically be wrapped with a Verilog module. Refer to the NC-SIM documentation for information
on using ncverilog to simulate VHDL code made part of Verilog code.

Also refer to example design iir_Ip_ncvhdl; access this design from the ADS Main window > File > Open >
Example > SDFHdICosim > iir_filter_wrk.

The components have one multi-input and one multi-output fixed-data type ports. They
also have single bit input pins Clock and Set. The Clock and Set inputs are processed only
if they are part of the Inputs parameter specification; otherwise they are ignored. If they
are part of the Inputs parameter, the behavior is the same as explained previously in the
section Automatic Clock and Set Signals (hdlcosim).

© Note
Clock and Set must not be part of the inputs that are being connected to the multi-input port.

HDL cosimulation models have parameters that enable you to control cosimulation with
the HDL simulator. The following sections describe the parameters that require user input.

HdISrcFile

HdISrcFile can be specified as follows:

e For user HDL code, the HDL source code file must be specified as shown in example
design iir_Ip_userhdl (ADS Main window > File > Open > Example > SDFHdICosim >
iir_filter_wrk). Here, the HdISrcFile must be the file that contains the VHDL entity or
Verilog module information that you want to cosimulate with.

o When you use ModelSim cosimulation (HdICosim) and have not compiled the
code, you must specify any other HDL files that the first file in HdISrcFile
depends on. The HDL files can be specified after the first file using space as the
separator (see iir_Ip_userhd! in the example workspace: ADS Main window >
File > Open > Example > SDFHdICosim > iir_filter_wrk). The files will be
compiled at the beginning of the simulation in the reverse order of the

10

Advanced Design System 2011.01 - HDL Cosimulation

specification. A work library is created automatically under project's data
directory where all compiled code is saved.

o In the case of VerilogXL cosimulation (VxICosim) and NC-SIM cosimulation
(NCCosim), all files required for simulation must be specified as mentioned
above. In the case of NC-SIM cosimulation (NCCosim), you can use pre-
compiled libraries as described in the NC-Verilog Reference documentation.

e For user HDL code that contains a long list of dependency files to be compiled, you
can create another file that contains the whole list of files. You must specify that file
as the value for the HdISrcFile parameter using < as the first character followed by
the file name. See the specification of HdISrcFile="< jir_Ip_flat.txt " in the example
design file jir_Ip_confvhdl (ADS Main window > File > Open > Example >
SDFHdICosim > jir_filter_wrk) .

e For user-VHDL code containing a configuration specification in a file different from the
file containing the entity specification, and if you want ADS to compile the user code
prior to cosimulation, then the file specification order is important. The order is
important because ADS compiles the files in reverse order of specification, and the
configuration specification file must be compiled after the entity specification file.
Therefore, the configuration specification file must be specified prior to the entity
specification file. For such a specification to identify the entity specification file, the
user-VHDL entity specification file must be preceded with a + character. See example
design iir_Ip_confvhd! (ADS Main window > File > Open > Example > SDFHdICosim
> jir_filter_wrk) .

Inputs

The Inputs parameter lists the names of the input ports of the HDL model. All the HDL
input port names that need to be updated from ADS must be specified.

This list is used to make the input connections between the ADS ports and the HDL ports.
The BusMerge component must be used on the input port when there is more than one
input to be connected. The first (last) input port in the list is connected to the bottom
(top) most input port on the BusMerge, and so on. The BusMerge must have a number of
input ports equal to the number of strings specified in the Inputs string array, except if
the model has pins named Clock and Set. The BusMerge component must not have pins
corresponding to Clock and Set, instead they must be connected to the Clock and Set
ports of the ADS HdICosim component. To use automatic Clock and Set signals, leave the
Clock and Set ports unconnected or hanging.

InputPhases

The InputPhases parameter delays the application of the input to the HDL model. It is an

array of integers. The time unit is the same as specified by the TimeUnit parameter,

described later. The InputPhases parameter specifies the delay for the application inputs

during an iteration, as explained in the section Automatic Clock and Set Signals (hdlcosim)

The delay specified for the Clock signal is ignored if the Clock signal is not connected and
1

Advanced Design System 2011.01 - HDL Cosimulation
an automatic clock is being used.

If Clock and Set are unconnected and the InputPhases parameter is not specified, the
inputs are automatically delayed for 3/4 times the IterationTime specified during each
cycle for the reasons mentioned in earlier section Automatic Clock and Set Signals
(hdlcosim) If any phase delay values are specified by the user, those values will be used.

In the case of the ADS HdICosim component, the order of the delay specification must be
the same as the order of the input names specified in the Inputs parameter.

InputPrecisions

The InputPrecisions parameter specifies the precision and arithmetic type to be used for a
particular input.

The order of the precision specification must be the same as the order of the input names
specified in the Inputs parameter.

Precision and arithmetic type specification was explained earlier in the section Precision for
Bit-Vector Type Ports (hdlcosim)

Outputs

The Outputs parameter lists the names of the output ports of the HDL model. All HDL
output port names that need to be read into ADS must be specified.

This list is used when making the output connections between the ADS Ptolemy ports and
the HDL ports. The BusSplit component is used on the output port. The first (last) output
port in the list is connected to the bottom (top) most output port on the BusSplit, and so
on. The BusSplit component must have a number of output ports equal to the number of
strings specified in the Outputs string array.

© Note
In the case of an inout VHDL port, specify the port name in the Inputs as well as the Outputs parameter.

OutputPrecisions

The OutputPrecisions parameter specifies the precision and arithmetic type to be used for
a particular output.

The order of the precision specification must be the same as the order of the output
names specified in the Outputs parameter, see Outputs.

12

Advanced Design System 2011.01 - HDL Cosimulation
Precision and arithmetic type specification was explained earlier in the section Precision for
Bit-Vector Type Ports (hdlcosim).

HdIModelName

HdIModelName is the name of the HDL entity or module to cosimulate with.

For a Verilog module, specify the module name to cosimulate with. For a VHDL entity you
can specify this parameter in the following ways:

e To select an entity that has only one architecture, the syntax is
Hd1lModelName="<entity>"

e To select an entity along with a particular architecture when more than one is
available, the syntax is
HdlModelName="<entity>.<architecture>"

e To select an entity along with its configuration specification, the syntax is
Hd1lModelName="<entity>+<configuration>"

See example design iir_Ip_confvhdl (ADS Main window > File > Open > Example >
SDFHdICosim > iir_filter_wrk).

HdlLibrary

The HdlLibrary parameter does not exist for VerilogXL cosimulation (VxICosim) and NC-
SIM cosimulation (NCCosim).

In the case of ModelSim cosimulation (HdICosim), this parameter specifies the library from
which the compiled HDL module or entity must be loaded. This parameter can control the
compilation as follows:

o If the code needs to be compiled, HdILibrary must be empty. This will compile the
code under work library. For any subsequent re-simulation of the same design, the
HDL code need not be recompiled. To turn off compilation, specify HdlLibrary=work.

o If you have already compiled the code in another library (for example, hdllib) then
only the file that has the entity or module specification needs to be specified for
HdISrcFile, and HdlLibrary should be set to hdllib.

o Before starting ADS, the MODELSIM environment variable must be set to a
modelsim.ini file that has the mapping information for hdllib.

o If MODELSIM is not set, you can specify the mapping for the library using =, for
example HdlLibrary="hdllib=/user/xyz/hdllib". You can specify more than one
library by separating them using spaces, and can specify mappings for any of
the libraries using =.

13

Advanced Design System 2011.01 - HDL Cosimulation

HdISimulatorGUI

The HdISimulatorGUI parameter determines the user interface mode of the HDL simulator.
If the HdISimulatorGUI is On, the HDL simulator is started with its graphical user interface
on. You can view the progress of the simulation, graph signals, and edit values while the
simulation is running.

The ModelSim command Restart is not supported during cosimulation. To restart HDL
cosimulation, quit and restart the ADS simulation.

© Note
If the HdISimulatorGUI is On and IterationTime is negative, use run -all in ModelSim to perform
cosimulation. The other run commands will only increment the HDL simulation time and will not
cosimulate.

If the HdISimulatorGUI is Off, the simulator is run in the background. ADS will start the
HDL simulator, run the simulation, and close the simulator at the end of simulation
without user interaction.

CmdArgs

The CmdArgs parameter specifies special simulator command invocation arguments
required for simulation of the HDL model.

IterationTime

IterationTime is the time that the HDL simulation is run during each firing of the HDL
cosimulation component. If the integer value provided is positive, the HDL simulator will
simulate for the specified humber of time units (where the time units are specified by the
parameter TimeUnit) then send data to ADS. This does not check to see if there are any
events still to be processed in the simulator. This feature is useful if you are running a
model whose output data is to be sampled periodically at a predetermined time.

© Note
The value can never be specified as 0 because the simulation will stop with a range error flagged.

Negative iteration time is valid only for ModelSim VHDL cosimulation. If the value is
negative, the HDL simulator is run until all the events are processed. The magnitude of
the value specifies the minimum amount of time to run before checking to see if there are
any events still to be processed. The output data is read after the event queue becomes
empty. This facility can slow down the simulation due to the overhead of monitoring the
simulation event queue. The lower the magnitude, the slower the execution because the
event queue must be polled more often. This facility is useful when the time the model
takes to provide stable/correct data output varies. This will not work for certain models
that never run out of events, such as those with internal clock signals.

14

Advanced Design System 2011.01 - HDL Cosimulation

When a negative iteration time is specified for a Verilog module to be cosimulated using
ModelSim, a VHDL wrapper is used to instantiate the Verilog module.

© Note
Negative iteration time will not work with Cadence NCsim or VerilogXL cosimulation.

TimeUnit

The TimeUnit parameter specifies the HDL simulation time resolution unit: fs, ps, ns, us,
ms or sec.

For VHDL simulation using ModelSim, TimeUnit will control the VHDL simulation time
resolution.

For Verilog simulation with any supported HDL simulator, TimeUnit will add timescale
directives to the top-level cosimulation wrapper. Users can have timescale directives for
different modules in their code. If any user module does not have a timescale specified,
TimeUnit will be used to generate a default timescale. The smallest of the different
timescale specifications will control the Verilog simulation time resolution.

15

Advanced Design System 2011.01 - HDL Cosimulation

HDL Simulator Licenses

The HDL simulator can only be invoked for one HDL primary design unit, like an entity or a
module. So for each HDL cosimulation model, a different HDL simulator is invoked, which
uses an independent license. Currently, there is no way to save/restore the state from one
entity to another. However, you can collect all the adjacent HDL cosimulation models into
one top-level HDL entity and generate one HDL cosimulation model for that entity.

The ADS HDL cosimulation feature has an independent license. Only one license is
required for a design that has more than one HDL cosimulation model.

16

Advanced Design System 2011.01 - HDL Cosimulation

Precision for Bit-Vector Type Ports

Bit-vector type HDL ports that get mapped to fixed type ports require precision for data
conversion. The precision for inputs and outputs is specified in the parameter named
Inputs (hdlcosim) and Outputs (hdlcosim).

The precision for a port is specified as two integers separated with a dot (for example
2.14). The first part is the number of bits used for representing the integral part and the
second is the number of bits used for representing the fractional part of the value on the
port.

By default, the arithmetic type is two's complement. To specify an unsigned arithmetic
type, append u to the precision specification. For example, an unsigned 2.14 can be
specified as 2.14u.

To repeat a particular precision specification you can use square bracket notation. For
example,

2.14u 2.14u 2.14u 1.2 3.4 3.4

can also be represented as

2.14u[3] 1.2 3.4[2]

The least significant bit (LSB) of the fixed data will always be assigned to the lowest
indexed element, and the most significant bit (MSB) will always be assigned to the highest
indexed element of the HDL vector port. Since the fixed data bit has only two possible

values (0 and 1) the values x, u, z, -, w, and | for 9-state std_logic types are mapped to 0
and the value h is mapped to 1.

17

Advanced Design System 2011.01 - HDL Cosimulation

Requirements for HDL Cosimulation

HDL cosimulation is an optional feature of ADS. To run it, you must have:

e ADS Ptolemy simulator
e One of the following HDL simulators:

o Model Sim/PLUS ™
o NC-SIM (only on Linux and Sun)
o Verilog® XL (only on Linux and Sun)

© Note
1. For the latest versions of HDL simulators supported on ADS, see Check the System
Requirements (Windows) (instalpc) or Check the System Requirements (UNIX/Linux)
(install).
2. NC-SIM and Verilog XL are not supported on Windows.

Requirements for 64-bit Operating Systems

32-bit HDL cosimulation is available on all supported operating systems, whereas 64-bit
HDL cosimulation is supported only on Linux and Solaris. Using HDL cosimulation with 32-
bit ADS requires 32-bit HDL simulators, and using HDL cosimulation on 64-bit ADS

requires 64-bit HDL simulators. It is not possible to cosimulate 32-bit ADS with 64-bit HDL
simulators and vice-versa.

!, |Caution
You must ensure that ADS points to the correct HDL simulator during cosimulation. Pointing to the wrong
simulator (such as pointing to a 32-bit HDL simulator when using 64-bit ADS and vice versa) may result in
unexpected results, abnormal behavior, and possibly an unstable system.

The following information gives details about each HDL simulator:

e ModelSim
o ModelSim is supported using the following simulators:
= ModelSim SE 6.3a for 64-bit and 32-bit simulations. There is not HDL
Cosim support on 64-bit windows.

o The following environment variables must be set or appended before
cosimulating with ModelSim in addition to all other environment variables
required by ModelSim and ADS:

« MTI_VCO_MODE = 32 or 64 corresponding to 32-bit or 64-bit simulation.

« LMC_HOME = points to the ModelSim installation directory.

» PATH = points to the 32-bit ModelSim executable for 32-bit cosimulation
and to the 64-bit ModelSim executable for 64-bit cosimulation.

e NC-Sim
o NC-Sim is supported using the following simulators on Linux and Sun:
« IUS 5.8 for both 64-bit and 32-bit simulations.
o Use the documentation for IUS 5.8 to set up all environment variables needed to
run NC-Sim.

18

Advanced Design System 2011.01 - HDL Cosimulation

e Verilog-XL
o Since Verilog-XL does not support 64-bit platforms, it is not supported in 64-bit
ADS.
o Verilog-XL is supported only in 32-bit ADS on Linux and Sun.

Requirements for Windows Vista

Windows Vista users must have Administrative rights with User Account Control (UAC)
disabled.
Consult Windows Vista help to disable UAC.

19

Advanced Design System 2011.01 - HDL Cosimulation

Supported HDL Data Types

HDL cosimulation currently supports various bit and bit-vector type HDL ports; they are all
mapped to the Ptolemy fixed data type port.

In the case of Verilog HDL, which supports only bit and bit-vector type ports, HDL
cosimulation will support any type of Verilog port. In the case of VHDL, which has a large
set of data types, HDL cosimulation will only support the ports that are of bit and bit-
vector types described in the IEEE std_logic_1164 library.

20

Advanced Design System 2011.01 - HDL Cosimulation

Theory of Operation for HDL
Cosimulation

With the HDL cosimulation feature, ADS Ptolemy has been configured to cosimulate with
either the ModelSim, VerilogXL, or NC-SIM HDL simulator. In this use model, you first
create the HDL design. The design must be compiled and it is recommended to test the
simulation with ModelSim, VerilogXL, or NC-SIM before cosimulation.

If the code is not compiled, you can use ADS to compile the code before cosimulation.
Cosimulation requires information regarding the VHDL entity or Verilog module that you
want to cosimulate with. This is used to generate HDL wrappers that incorporate user code
and C-interface code to create an inter-process communication (IPC) link between ADS
and the HDL simulator.

The cosimulation can be run in graphical user interface mode to monitor the HDL
simulation. It can also be run in the background processing mode.

HDL cosimulation uses the ADS Ptolemy Synchronous Dataflow (SDF) domain, in which
numeric signals are consumed and produced by the HDL cosimulation component. There is
no timing information communicated between ADS and the HDL simulator. ADS sends
data into the HDL simulator and receives data without any knowledge of the HDL timing.

HDL cosimulation does not use the ADS Ptolemy Timed Synchronous Dataflow (TSDF)
domain. Since the HDL cosimulation component acts as an ADS Ptolemy numeric
component, any timed data from other ADS Ptolemy components will be converted to
numeric at the HDL cosimulation component's input.

The HDL cosimulation component is a humeric component. Because the HDL simulation is
time driven, it is initiated at every fixed interval for each firing of the HDL cosimulation
component in ADS. The time scale used by the HDL simulator is independent of the ADS
simulation.

Each time the HDL cosimulation component is fired, the HDL simulator receives input
values from other ADS components and uses them to perform the HDL simulation. Once
the HDL simulator is finished with its processing, it passes the simulation results back to
ADS. These passed values are then the inputs for other ADS components, and thus the
simulation cycle continues. This cycle repeats as many times as the scheduler requires.
Each time the HDL cosimulation component is fired, the HDL simulation duration is
determined by the value of the IterationTime parameter (see IterationTime (hdlcosim)) in
the HDL cosimulation component. You must determine how long the HDL simulator should
run before its outputs are sent back to the HDL component. This timing information should
not be confused with the timing used in other ADS Ptolemy timed components.

From the HDL simulator engine's point of view, the ADS input interface is viewed as
forcing values onto the ports. At the output interface of the HDL cosimulation component,
the results are converted back into ADS format and sent to the connecting ADS
component.

21

Advanced Design System 2011.01 - HDL Cosimulation
You can specify the HDL simulation to run until the HDL simulator has no more events to
process by specifying a negative iteration time. Using this method, the outputs are
guaranteed to be stable since there are no more events left in the simulator that might
change them. This method is less efficient than the fixed positive iteration time method,
as the HDL simulator must be monitored to determine when all events have been
processed. Also, it will not work for certain HDL models where some designs never run out
of events, such as those with internal clock signals. When a negative iteration time is
specified for a Verilog module, a VHDL wrapper is used to instantiate the Verilog module.

22

Advanced Design System 2011.01 - HDL Cosimulation
Time-Specified Signals in User HDL
Code

When HDL code has internal clocks or time-specified signals (for example, wait statements
in VHDL code) the HDL cosimulation may keep running until all the events in the user HDL
code are processed. The number of events generated in user HDL code can be infinite (for
example, when you have an internal clock).

You can avoid using an internal clock and use the ADS Clock instead (refer to the section
Automatic Clock and Set Signals (hdlcosim)). If this is not possible, then infinite event
processing can be avoided if you know how long the HDL simulation needs to run to
complete the cosimulation, with all of the ADS iterations. Different simulators have
different mechanisms to break a simulation after a certain simulation time. Here is an
example using ModelSim:

1. Use the ModelSim simulator to create a file called test.do under your workspace's
data directory. For example, test.do may look like this:

run 11000
quit -f

Set CmdArgs="-do test.do". This stops the simulation after 11000 nsec. (Refer to
CmdArgs (hdlcosim)) on the HdICosim component block.
The total run time can be calculated as equal to:

The number of ADS iterations (depends on the DF controller setup and the

different sinks used in the design) multiplied by the IterationTime specified on

the HdICosim block.
Alternatively, you can also open the ModelSim UI mode and use multiple run 100
commands to see how long it takes before the message VHDL Cosimulation has completed
.. appears in the ModelSim UI. This time can then be used to create the test.do file.

Do not use the run-all command, which will process all the events in the HDL simulation.

23

	 About HDL Cosimulation
	 Automatic Clock and Set Signals
	 Bidirectional HDL Ports
	 HDL Cosimulation Components and Their Parameters
	 HdlSrcFile
	 Inputs
	 InputPhases
	 InputPrecisions
	 Outputs
	 OutputPrecisions
	 HdlModelName
	 HdlLibrary
	 HdlSimulatorGUI
	 CmdArgs
	 IterationTime
	 TimeUnit

	 HDL Simulator Licenses
	 Precision for Bit-Vector Type Ports
	 Requirements for HDL Cosimulation
	 Requirements for 64-bit Operating Systems
	 Requirements for Windows Vista

	 Supported HDL Data Types
	 Theory of Operation for HDL Cosimulation
	 Time-Specified Signals in User HDL Code

